Photo Photo Photo Photo Photo Photo

Print
E-mail
Computer Science: Extractive Multi-Document Text Summarization Using Multi-Objective Evolutionary Algorithm Based Model

 

Extractive Multi-Document Text Summarization Using Multi-Objective Evolutionary Algorithm Based Model

Hilal H. Saleh1*, Nasreen J. Kadhim2

1Department of Computer Science, University of Technology, Baghdad, Iraq

2Department of Computer Science, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

Automatic document summarization technology is evolving and may offer a solution to the problem of information overload. Multi-document summarization is an optimization problem demanding optimizing more than one objective function concurrently. The proposed work considers a balance of two significant objectives: content coverage and diversity while generating a summary from a collection of text documents. Despite the large efforts introduced from several researchers for designing and evaluating performance of many text summarization techniques, their formulations lack the introduction of any model that can give an explicit representation of – coverage and diversity – the two contradictory semantics of any summary. The design of generic text summarization model based on sentence extraction is modeled as an optimization problem redirected into more semantic measure reflecting individually both content coverage and content diversity as an explicit individual optimization models. The proposed two models are then coupled and defined as a multi-objective optimization (MOO) problem. Up to the best of our knowledge, this is the first attempt to address text summarization problem as a MOO model. Moreover, heuristic perturbation and heuristic local repair operators are proposed and injected into the adopted evolutionary algorithm to harness its strength. Assessment of the proposed model is performed using document sets supplied by Document Understanding Conference 2002 

alt

 and a comparison is made with other state-of-the-art methods using Recall-Oriented Understudy for Gisting Evaluation 

alt

 toolkit. Results obtained support strong proof for the effectiveness of the proposed model based on MOO over other


state-of-the-art models.

Keywords: Multi-objective optimization; multi-objective multi-document text summarization problem; MOP; multi-objective evolutionary algorithm; MOEA/D; non-dominated solution.

 


التلخيص الأقتطاعي للنصوص متعددة المستندات باستخدام نموذج مستند على الخوارزمية التطورية متعددة الاهداف

هلال هادي صالح1*, نسرين جواد كاظم2

1قسم علوم الحاسبات, الجامعة التكنلوجية, بغداد, العراق

2قسم علوم الحاسبات, كلية العلوم, جامعة بغداد, بغداد, العراق

الخلاصة

 

تقنية التلخيص الأوتوماتيكي تطور وربما تقدم حل الى مشكلة الحمل الزائد للمعلومات. عملية التلخيص للنصوص متعددة المستندات تصنف على انها مشكلة أمثلية تتطلب الاستفادة المثلى من اكثر من دالة هدف في وقت واحد. العمل المقترح يأخذ بنظر الأعتبار تحقيق التوازن بين هدفين مهمين هما: تغطية المحتوى لمجموعة المستندات والتنوع عند توليد ملخص من مجموعة من المستندات النصية. على الرغم من الجهود القائمة على تصميم و تقييم أداء العديد من تقنيات تلخيص النصوص, تفتقر صياغات هذه التقنيات الى تقديم أي نموذج يمكن أن يعطي التمثيل الصريح – تغطية المحتوى والتنوع – وهما دلالتان متناقضتان في أي ملخص. أن تصميم نموذج يهدف الى تلخيص نص عام قائم على أقتطاع الجمل تمت أعادة توجيهه الى تدبير ذات دلالة اكبر يعكس بصورة مستقلة كلا من تغطية وتنوع المحتوى كنموذجي أمثلية صريحين. بعد ذلك تمت عملية اقتران النموذجين المقترحين وتعريفهما كمشكلة أمثلية تعدد الاهداف. حسب علمنا ، هذه هي المحاولة الأولى لمعالجة مشكلة تلخيص النصوص كنموذج أمثلية متعدد الأهداف. وعلاوة على ذلك ، تم أقتراح عامل توجيه اضطراب وعامل توجيه أصلاح محلي وحقنهما في الخوارزمية التطورية المعتمدة  لتسخير قوتها . عملية تقييم النموذج المقترح تمت باستخدام مجموعة

المستندات المجهزة من قبلمجموعة البيانات العالمية

 

 Document Understanding Conference

alt

 

وقد تمت مقارنة النتائج المتحصلة مع مجموعة من الانظمة الحديثة. قياس وتقييم الأداء للنموذج المقترح تم باستخدام أدوات


alt

 

النتائج المتحصلة دعمت العمل بدليل قوي على فعالية النموذج المقترح المستند على أمثلية تعدد الاهداف نسبة الى النماذج الحديثة التي تمت المقارنة بها.

 

 

 

 



 

alt

 

 

S5 Box

Login



Register

*
*
*
*
*

Fields marked with an asterisk (*) are required.