A chemotaxonomical Study of Four Species Belonging the Genus *Arabis* L. Cruciferae (Brassicaceae) in Iraq

Jawhar F. Saeed¹, Bnar Kh. Bakr², Aven Nozad Adham³

¹College of Education, University of Salahaddin, Erbil, Kurdistan, Iraq.
²Department of Biology, College of Science, University of Salahaddin, Erbil, Kurdistan, Iraq.
³College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Iraq.

Abstract

This study has been focused on the detection of phenolic compound in aerial parts (stem and leaves) of the species belonging the genus *Arabis* L. *A.Caucasica* Willd, *A.Sagittata* (Bertol)DC, *A.Aucheri* Boiss, *A.nova* Vill of family cruciferous (Brassicaceae) which were collected during field trips of the districted of Iraq. Phenolic compounds have been identified by using High Performance Liquid Chromatography (HPLC). Nine standard compounds used for comparison five of them flavonoids (Rutin, Quercetin, kaempferol, Luteolin and Apigenin) and the other phenolic acid (Chlorogenic acid, Caffeic acid, Ferulic acid and Rosmarinic acid), results showed that species vary in containing phenolic compound which can be counted as a taxonomic evidence supporting the taxonomic studied, this research on Rosmarinic acid, Kaempferol, Quercetin, Rutin, Apigenin, Chlorogenic acid: This compound exist in all species (stem and leaves part) is regarded as a first chemical study of genus *Arabis* L. in Iraq.

Keywords: *Arabis*, flavonoids, phenolic acids and HPLC.
Introduction

The genus Arabia L. was a largest with about 160 is a largest genera [1]. Arabis (Rosk cress) was grown as ornamentals [2]. Is about 120 species in temperate urope and asaia , north America and mountens ,in Iraq tropical Africa . four species [3] chemotaxonomy was used in classification of plants depending their chemical contain. During metabolism processes plant produce secondary metabolites, the type of these compounds is often specific and useful in classification [4].

Brassicaceae (cruciferae) was rich in glucosinilate (mustard-oil glucoside) and often cyanogenic but without iridoid substance, mostly not tanniferous lacking both ellagic acids and pranthocyanins sometimes present in seed coat and only seldom with alkaloids, cardenoids, present in all organs [5]. The common oil yielding species are ; mustard sarson (Brassica compestarvar.sarson), white mustard, safe sarson (Brassica alba), Indian mustard, Rail (Brassica juncea), Rape seed, toria (Brassica napus), Taramir (Erucasative) [6,1 & 2]. Most USA cruciferae plants contain sulphur compound, the seeds of many plant yield vegetable oil of multipurpose use [7].

Many types of natural product, found in plants, these products different, these compounds differ from one taxonomic group to another. Chemosystematics often divided the vast array of natural plant products in to tow major group according to molecule size micro molecules and macromolecules [8]. Phenolic compounds are constituted in one of the biggest and widely distributed groups of secondary metabolites in plant.[9] In Iraq there are many studied in chemotaxonomy like [10-16].

Materials and methods

Plant extract preparation

Of each species used more than 25 specimens, 2 gm taken from shoot apical portion and leaves of all species.
The weight was put inside a conical flask, then add 50ml ethanol %70 for 48 hours.
After that the separation of samples were done by using filter paper medium size pores (110mm).
Stayed in the room temperature under dry air current to concentrate the sample by evaporation of Ethanol to extremely half of volume.
Add petroleum ether which a boiling point (80-100°C).
The mixture put inside the separating funnel and left until separated in to two distinguished layers.
The lower layer is taken that contain the extract of plant.
The samples were leaved under dry current until it reach of half volume [17].

HPLC analysis

All chemical reagents used for analysis HPLC were analytical or HPLC Grade (99.99%). HPLC-grade methanol and formic acid were purchased from Scharlauchemie, S.A., Europian Union. Ultra-pure water was used for sample preparation and preparation of mobile phases for HPLC analysis. Caffeic acid, chlorogenic acid, ferulic acid, rosmarinic acid, kaempferol, quercetin, rutin, luteolin and apigenin as a standard material was purchased from Chroma Dex, USA.

Preparation of Standard Solutions

Caffeic acid, chlorogenic acid, ferulic acid, rosmarinic acid, kaempferol, quercetin, rutin, luteolin and apigenin (1 mg), were accurately weighed into a 5 ml volumetric flask, dissolved in methanol: water (1:1).

Chromatographic condition

The qualitative analysis of caffeic acid, chlorogenic acid, ferulic acid, rosmarinic acid, kaempferol, quercetin, rutin, luteolin and apigenin were performed on Knauer HPLC instrument equipped with ChromGate HPLC software provided by Knauer was use with Eurosor 100, C18 column (4.6 mm i.d. x 250 mm, 5 mm) and UV/Visible detector. The flow rate of the
mobile phase were kept at 1 ml/min. Mobile phase A was methanol and B water containing (1% formic acid) isocratic conditions were as 25 % A and 75 % B. The temperature of column was controlled at 30 °C. Injection volume was 20 µl, and the detection wavelength was set to 350 nm.

Results and Discussion
This study is regarded as a first chemical study of the genus Arabis in Iraq by. Using nine diagnostics compounds belonging to phenolic compounds, four of them flavonoids and the other phenolic acids, as standards, the following results were gotten:

- **Phenolic acid**
 A. Caffeic acid: This compound found in the stem of A.Caucasio an A.auchar leaves exist in all species (stem and leaves part) except in stem of A.caucasia and A.auchari leaves.
 B. Chloregenic acid: This compound exist in all species (stem and leaves part) except in A. aureculata and A. nova (stem and leaves).
 C. Ferulic acid: presented only in A.caucasia leaf and A. aureculata stem.
 D. Rosmarinic acid: not found in any species.

- **Flavenoids**
 E. Kaempferol: not found in any species.
 F. Quercetin: not found in any species.
 G. Rutin: not found in any species.
 H. Luteolin: found only in A.auchari (stem and leaves).
 I. Apigenin: not found in any species.

Table 1- Retention times for Phenolic acids and Flavonoids that used in this study by HPLC method.

<table>
<thead>
<tr>
<th>Compound number</th>
<th>Name of compound</th>
<th>Retention time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Caffeic acid</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>Chlorogenic acid</td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>Ferulic acid</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>Rosmarinic acid</td>
<td>2.4</td>
</tr>
<tr>
<td>5</td>
<td>Kaempferol</td>
<td>8.4</td>
</tr>
<tr>
<td>6</td>
<td>Quercetin</td>
<td>4.3</td>
</tr>
<tr>
<td>7</td>
<td>Rutin</td>
<td>2.7</td>
</tr>
<tr>
<td>8</td>
<td>Apigenin</td>
<td>7.3</td>
</tr>
<tr>
<td>9</td>
<td>Luteolin</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Table 2- distribution of phenolic acid and flavonoids in studied species.

<table>
<thead>
<tr>
<th>Ethanolic extract</th>
<th>Standard phenolic acid</th>
<th>Standard flavonoids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Caffeic acid</td>
<td>Chlorogenic acid</td>
</tr>
<tr>
<td>A. caucasia leave</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>A. caucasia stem</td>
<td>-ve</td>
<td>+ve</td>
</tr>
<tr>
<td>A. aureculata leave</td>
<td>+ve</td>
<td>-ve</td>
</tr>
<tr>
<td>A. aureculata stem</td>
<td>+ve</td>
<td>-ve</td>
</tr>
</tbody>
</table>
HPLC analysis were carried out to evaluate the chemical content of phenolic acid and flavonoids. The species showed a good content of phenolic acid especially (Caffeic acid and Chloregenic acid), this explain that the presence of the phylogenic associated relationship among the studied *Arabis* species in their chemical content. Ferulic acid found only in leaf of *A. caucasica* and *A. aureculata* stem, this means it was less distributed between studied species, finally there have no any relation between the studied *Arabis* species in Rosmarinic acid because did not found in any plant parts of species, Table- 2.

According to the content of the Flavonoids compounds there have no any relation between *Arabis* species and flavonoids except Luteoline that found in *A. auchari* stem and leaves part Table- 2.

Figure 1- Chromatogram of standard phenolic acids.
Figure 2 - Chromatogram of standard flavonoids.

Figure 3 - Representative chromatogram of ethanolic extract of *Arabiscaucasia* A-leaves, B-Stem extract 1-Chlorogenic acid; 2-Caffeic acid; 3-Ferulic acid
Figure 4 - Representative chromatogram of ethanolic extract of Arabisaureculata A-leaves, B-Stem extract 2-Caffeic acid; 3-Ferulic acid.

Figure 5 - Representative chromatogram of ethanolic extract of Arabisaucheri A-leave, B-Stem extract 1-Chlorogenic acid; 2-Caffeic acid; 4-Luteolin.
Figure 6 - Representative chromatogram of ethanolic extract of *Arabis nova* A-leave, B-Stem extract 2-Caffeic acid.
Plate 1- The structure of standard flavnoids*.

*the structures taken from [18].
Plate 2- The structure of standard phenolic acid compounds*.

* the structures taken from [18].

References
15. Yonus, Th. F. 2016. A systematic study of the genus Isatis L. (Brassicaceae) in Kurdistan Region of Iraq, MSc Thesis Agriculture College, University of Salahaddin (in English).